Math Homework #3 Solution

$35.00 $24.00

Part I (50%)   Exercise 5.10.4.d   Exercise 5.10.7   Exercise 5.11.10   Exercise 5.11.11   Part II (50%)   Consider the following IVP ( y0(t) =   20y + 20t2 + 2t; 0   t   1;             y(0) = 1=3               with…

You’ll get a: . zip file solution

 

 
Categorys:

Description

5/5 – (2 votes)

Part I (50%)

 

  • Exercise 5.10.4.d

 

  • Exercise 5.10.7

 

  • Exercise 5.11.10

 

  • Exercise 5.11.11

 

Part II (50%)

 

Consider the following IVP

(

y0(t) =   20y + 20t2 + 2t; 0   t   1;
           
y(0) = 1=3            

 

with the exact solution y(t) = t2 + 1=3e 20t. Use the time step sizes h = 0:2; 0:125; 0:1; 0:02 for all methods. Solve the IVP using the following methods

 

  • Euler’s method

 

  • Runge-Kutta method of order four

 

  • Adams fourth-order predictor-corrector method (see ALGORITHM 5.4 p.311)

 

  • Milne-Simpson predictor-corrector method which combines the explicit Milne’s method

 

4h

wi+1 = wi  3 + 3 [2f(ti; wi)           f(ti  1; wi  1) + 2f(ti  2; wi  2)];

 

and the implicit Simpson’s method

 

h

wi+1 = wi    1 + 3 [f(ti+1; wi+1) + 4f(ti; wi) + f(ti  1; wi  1)]:

 

Compare the results to the actual solution in plots, compute jwi yij, and specify which methods become unstable. Based on the values of h that were chosen, can you make a statement about the region of absolute stability for Euler’s method and Runge-Kutta method of order four?

 

Requirements        Submit to CCLE a    le lastname_firstname_hw3.zip containing the following         les:

 

A MATLAB function abm4.m that implements Adams fourth-order predictor-corrector method, a MAT-LAB function ms.m that implements Milne-Simpson predictor-corrector method, and a MATLAB script main.m that solves the given IVP and plots the approximated solutions versus the exact one. (Please include euler.m and rk4.m for completeness.)

 

A PDF report that shows the plots and answers the above questions.

 

 

 

 

 

 

 

 

 

 

 

1